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Pharmacophore hypotheses were developed for a series of 2,4-diamino-5-deazapteridine
inhibitors of Mycobacterium avium complex (MAC) and human dihydrofolate reductase
(hDHFR). Training sets consisting of 20 inhibitors were selected in each case on the basis of
the information content of the structures and activity data as required by the HypoGen program
in the Catalyst software. In the case of MAC DHFR inhibitors, the best pharmacophore in
terms of statistics and predictive value consisted of four features: two hydrogen bond acceptors
(HA), one hydrophobic (HY) feature, and one ring aromatic (RA) feature. The selected
pharmacophore hypothesis yielded an rms deviation of 0.730 and a correlation coefficient of
0.967 with a cost difference (null cost minus total cost) of approximately 52. The pharmacophore
was validated on a large set of test inhibitors. For the test series, a classification scheme was
used to distinguish highly active from moderately active and inactive compounds on the basis
of activity ranges. This classification scheme is more practical than actual estimated values
because these values have no meaning for compounds yet to be tested except that they indicate
whether the compounds will be active or inactive in a biological assay. For the training set,
the success rate for predicting active and inactive compounds was 100%. For the test set, the
success rate in predicting active compounds was greater than 92% while about 7% of the inactive
compounds were predicted to be active. This successful prediction was further validated on
three structurally diverse compounds active against MAC DHFR. Two compounds mapped
well onto three of the four features of the pharmacophore. The third compound was mapped to
all four features of the pharmacophore. This validation study provided confidence for the
usefulness of the selected pharmacophore model to identify compounds with diverse structures
from a database search. Comparison of pharmacophores for inhibitors of human and MAC
DHFR is expected to reveal fundamental differences between these two pharmacophores that
may be effectively exploited to identify and design compounds with high selectivity for MAC
DHFR.

Introduction

Mycobacterium avium complex (MAC),‡ a group of
microorganisms, causes one of the most significant
disseminated infections in patients with acquired im-
munodeficiency syndrome (AIDS).1-6 About 50-70% of
patients with advanced AIDS are infected with MAC.7,8

Infections by MAC in the United States were rare prior
to the HIV-1 epidemic. However, at the end of 1999, the
Center for Disease Control and Prevention (CDC)
reported more than 41 000 cases of infection with MAC.
The CD4+ cell counts in patients with advanced AIDS
may become reduced to below 100, and a correlation has
been reported between the CD4+ cell count and the
development of MAC disease.9 These organisms are
highly adaptive to their surroundings, e.g., pH and
temperature, and are resistant to most antibiotics and
available antimycobacterial agents.6 Therefore, there is
an urgent need to develop antimycobacterial agents
targeted to these organisms.

Dihydrofolate reductase (DHFR) is an important
enzyme required for the biosynthesis of RNA, DNA, and
protein and is the major target of drug development
against several diseases, e.g., cancer and bacterial and
parasitic infections.10-15 It is also one of the best studied
enzymes, and the wealth of acquired knowledge is useful
for selectively targeting this enzyme to design inhibitors
without disrupting the function of the host DHFR.
Several reports have been published on the design of
MAC DHFR inhibitors.16-21 Recently, Suling et al. have
reported a large set of deazapteridine derivatives (Fig-
ure 1) as potential antimycobacterial agents targeted
to MAC DHFR and successfully identified a potent
inhibitor with a selectivity index of 2300 [(IC50-
(MAC DHFR)/IC50(hDHFR)].19 We decided to exploit
this wealth of information, including the biological
activity data, which covers almost a 4 log unit range to
develop pharmacophore hypotheses. A pharmacophore
represents the three-dimensional (3D) arrangements of
chemical features in a molecule (ligand) that may be
essential for important binding interactions with a
receptor. In the absence of any knowledge of the 3D
structure of a receptor, pharmacophores may provide
such important information in the drug design process.
The pharmacophores may be used in several ways, e.g.,
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Figure 1. Chemical structures of 2,4-diamino-5-deazapteridines. All structures were drawn using ChemDraw 6.0 software.56
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as a 3D query in searching 3D databases containing
“druglike” small organic molecules to identify active and
specific inhibitors or in evaluating a new compound for
mapping on a known pharmacophore. The concepts of
pharmacophore, their development techniques, and
applications have been elegantly compiled in a recently
published book.22 This approach is powerful and found
wide applications in drug design.22-27 A drug discovery
cycle, to identify, optimize, and eventually take a
compound to the market, is generally a long process
(approximately 12-15 years) and is very expensive
(approximately $500 million R&D expense).28 Therefore,
there is a pressing need to reduce the cost of drug
discovery steps. Pharmaceutical companies are taking
more rational approaches than trial and error to identify
new chemical entities (NCE). The hypothesis generation
methods (HipHop and HypoGen) of the Catalyst soft-
ware29 have been successfully used in drug discovery
research30-54 and toxicology55 (for a more comprehensive
reference lists see http://www.accelrys.com/references/
rdd_pub.html). Kaminski et al. reported the develop-
ment of pharmacophore models from a series of farnesyl
protein transferase (FPT) inhibitors.34 The best-derived
pharmacophore model was used to search a 3D database
from the Schering-Plough Research Institute and suc-
cessfully identified several low micromolar FPT inhibi-
tors with varied structures compared to the structures
used in the training set to develop the pharmacophore.
Sprague35 used this method in developing pharmaco-
phores for inhibitors against angiotensin converting
enzymes (ACE), protein farnesyl transferase (PFT),
human immunodeficiency virus (HIV) protease, and
HIV reverse transcriptase (RT). Recently, Kurogi et al.
have used Catalyst/HipHop generated pharmacophore
in searching 3D database to identify novel mesangial
cell proliferation inhibitors.51 These studies suggest that
the Catalyst generated pharmacophores can be ef-
fectively used for rational drug design.

Manetti et al. have recently reported the use of the
Catalyst/HipHop modules to develop common feature
hypotheses for a series of novel antibacterial compounds
against both Mycobacterium tuberculosis and Mycobac-
terium avium 103317.42 We present in this report the
development of pharmacophores of a large dataset of
antimycobacterial compounds against Mycobacterium
avium DHFR by using the Catalyst/HypoGen module.
Because there is, so far, no report on developing phar-
macophores using inhibitors of Mycobacterium avium
DHFR, this study is expected to provide useful knowl-
edge for developing antimycobacterial drugs targeted to
MAC DHFR.

Materials and Methods

Molecular Modeling. All molecular modeling works were
performed on a Silicon Graphics Octane2 R12000 computer
running Irix 6.5.12 (SGI, 1600 Amphitheatre Parkway, Moun-
tain View, CA 94043). Catalyst 4.6 software29 was used to
generate pharmacophore models.

Biological Data. Antimycobacterial activities of 2,4-di-
amino-5-deazpteridines against both MAC and human recom-
binant DHFR (rDHFR) were taken from the literature19 and
are listed in Tables 1, 3, and 5. Pharmacophore models have
been developed using datasets from both systems. The datasets
are divided into a training set and a test set. The training sets
were selected in such a way so that there was no redundancy
in information content in terms of both structural features and

activity ranges. The most active compounds were included so
that they provide critical information on pharmacophore
requirements. Several moderately active and some inactive
compounds were also included to spread the activity ranges
as widely as possible. The important aspect of this selection
scheme is that each active compound should teach something
new to the HypoGen module to help it uncover as much critical
information as possible for predicting biological activity. In
case of the MAC DHFR system, a training set of 20 compounds
with the above criteria has been selected (Table 1); the other
58 compounds were used as the test set (Table 5). Similarly,
a training set for the human DHFR system was also selected
consisting of 20 compounds (Table 3), and the other 57
compounds were used as the test set (Table 5). An uncertainty
value of 3 (default) was used for compound activity, which is
a ratio range of uncertainty in the activity value. The activities
(IC50) against MAC DHFR have been classified as follows:
highly active (<10 nM), moderately active (>10-100 nM), and
inactive (>100 nM). The activities against hDHFR have been
classified as highly active (<100 nM), moderately active
(>100-1000 nM), and inactive (>1000 nM). These activities
are classified, somewhat arbitrarily, on the basis of the lowest
and the highest activity ranges for each target DHFR enzyme.

Pharmacophore Mapping. Details of the pharmacophore
development procedures have been described in the litera-
ture.22,35 In brief, conformational models of all training set
molecules for both MAC DHFR and hDHFR datasets were
generated using the “best quality” conformational search
option in Catalyst using a constraint of 20 kcal mol-1 energy
threshold above the global energy minimum and Charmm force
field parameters.57 A maximum of 250 conformations were
generated to ensure maximum coverage in the conformational
space. All other settings were kept as default. Instead of using
just the lowest energy conformation of each compound, all
conformational models for molecules in each training set were
used in Catalyst for pharmacophore hypothesis generation. An
initial analysis revealed that four chemical feature types such
as hydrogen bond acceptor (HA), hydrogen bond donors (HD),
and hydrophobic (HY) and ring aromatic (RA) features could
effectively map all critical chemical features of all molecules
in the training and test sets. These four feature types were
used to generate 10 pharmacophores from both training sets.
The Catalyst software can generate pharmacophore hypoth-
eses consisting of a maximum of five features.

Important Output Parameters That Determine the
Quality of Pharmacophore Hypothesis. The HypoGen
module in Catalyst performs two important theoretical cost
calculations (represented in bit units) that determine the
success of any pharmacophore hypothesis. One is known as
the “fixed cost”, which represents the simplest model that fits
all data perfectly, and the second one is known as “null cost”,
which represents the highest cost of a pharmacophore with
no features and which estimates activity to be the average of
the activity data of the training set molecules. A meaningful
pharmacophore hypothesis may result when the difference
between these two values is large; a value of 40-60 bits for a
pharmacophore hypothesis may indicate that it has 75-90%
probability of correlating the data (Catalyst 4.6 documenta-
tion). The total cost of any pharmacophore hypothesis should
be close to the fixed cost to provide any useful models. Two
other parameters that also determine the quality of any
pharmacophore hypothesis with possible predictive values are
the configuration cost, which is also known as the entropy cost
and depends on the complexity of the pharmacophore hypoth-
esis space, and the error cost, which is dependent on the rms
differences between the estimated and the actual activities of
the training set molecules. The rms deviations represent the
quality of the correlation between the estimated and the actual
activity data.

Results and Discussions

Pharmacophores have been generated using a set of
20 2,4-diamino-5-deazapteridine derivatives with anti-
mycobacterial activity against both MAC DHFR and
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hDHFR. Though the activities of these inhibitors against
hDHFR were determined to define the selectivity of
inhibitors against MAC DHFR, we have generated
pharmacophores for hDHFR inhibitors to understand
both the similarities and differences of these pharma-
cophores that may contribute to selectivity.

1. Mycobacterium Avium Complex DHFR. Phar-
macophore Hypothesis Generation. 1.1. Training
Set. Sets of 10 hypotheses were generated using the
data from 20 training set compounds (Table 1). Different
cost values, correlation coefficients (r), rms deviations,
and pharmacophore features are listed in Table 2. All
10 hypotheses consist of 4 features. Six of the hypoth-
eses have one hydrogen bond acceptor (HA), one hydro-
gen bond donor (HD), one hydrophobic (HY) feature, and
one ring aromatic (RA) feature, whereas three of the
hypotheses have two hydrogen bond donors, one hydro-
phobic feature, and one ring aromatic feature. The best
pharmacophore (hypothesis 1), which has the highest
cost difference, lowest error cost, lowest rms difference,
and the best correlation coefficient, has two hydrogen
bond acceptors, one hydrophobic feature, and one ring
aromatic feature. Table 1 shows the actual and esti-
mated antimycobacterial activity of 2,4-diamino-5-dea-
zapteridine derivatives against MAC-DHFR. In the
training set compounds, all highly active compounds
(<10 nM) were predicted correctly. Two moderately
active compounds (>10-100 nM) were predicted to be
highly active, and all inactive compounds (>100 nM)
were correctly predicted to be inactive.

This pharmacophore hypothesis was evaluated for its
predictive ability on a large series of test set compounds.

1.2. Test Set. The purpose of the pharmacophore
hypothesis generation is not just to predict the activity
of the training set compounds accurately but also to
verify whether the pharmacophore models are capable
of predicting the activities of compounds of test series
and classifying them correctly as active or inactive. We
have constructed a large set of test set compounds (58),
and conformational studies were done as described
earlier. The estimated activities were scored using hy-
pothesis 1 as the pharmacophore (Table 5). Out of 55
highly active compounds (<10 nM), 51 were accurately
predicted as highly active (92.7% success) and only one
highly active compound was predicted as inactive. The
model also incorrectly predicted one inactive compound
as active, three inactive compounds as moderately
active, one moderately active compound as inactive, and
one inactive compound as moderately active.

One of the most active as well as most selective
antimycobacterial compounds among all the compounds
tested in this series (compound no. 1, selectivity ratio
of 2300) was selected from the training set to show the
mapping of this compound on the selected pharmaco-
phore (hypothesis 1, Figure 2A). This pharmacophore
predicted the antimycobacterial activity of this com-
pound against MAC DHFR remarkably well (actual IC50
of 0.84 nM vs the estimated activity of 0.90 nM). To give
some indications of how well the active compounds from
the test set mapped this pharmacophore, one of the most
active compounds (no. 65) has been selected and mapped
on this pharmacophore and is shown in Figure 2B. This
compound mapped the pharmacophore very well, and
the estimated activity, calculated on the basis of this

pharmacophore, was close to the actual activity (actual
IC50 of 0.98 nM vs the estimated value of 0.97 nM) and
is shown as +++ in Table 5. Both these compounds
mapped all four important features very well. Inactive
compounds either missed one or more features, or some
structural portion of the compound was outside the
pharmacophore features. Out of 58 test set compounds
only 4 inactive compounds (<7%) mapped the pharma-
cophore correctly and gave false positive results.

2. Human DHFR. Pharmacophore Hypothesis
Generation. 2.1. Training Set. A training set of 20
compounds tested against human DHFR (Table 3) was
used to develop pharmacophore hypotheses. A total of
10 hypotheses were generated (Table 4) using the same
criteria as were used for MAC DHFR inhibitors. The
details of the hypotheses are shown in Table 4. Overall,
hypothesis 1 has the best statistical significance in
terms of its predictive ability, as indicated by the high
correlation coefficient and low rms deviations (Table 4).
The total cost (88.167 bits) is close to the fixed cost
(83.088 bits), and also a high cost difference (∼52 bits)
is indicative of greater predictability of the pharma-
cophore model. This pharmacophore hypothesis has
three hydrogen bond donating features and one hydro-
phobic feature, which contrasts sharply with the best
pharmacophore hypothesis obtained with the training
set compounds against MAC DHFR. This pharmaco-
phore model has been used to estimate the activity of
the compounds in the training set (Table 3). Out of 10
highly active compounds (IC50 < 100 nM), all were
predicted to be highly active (100% success). Out of six
moderately active compounds (IC50 > 100-1000 nM),
all but one were predicted correctly. All four inactive
compounds (IC50 > 1000 nM) were also predicted
correctly. One moderately active compound was esti-
mated to be inactive.

2.2. Test Set. A total of 57 compounds with activity
data were selected as test set compounds. Hypothesis
1 was selected as the best model and was used to
estimate their activity (Table 5), represented again as
follows: +++, highly active; ++, moderately active; +,
inactive. A total of 30 of 33 highly active compounds
were predicted to be highly active (∼91% success); the
other three were predicted to be moderately active. A
total of 6 out of 15 moderately active compounds were
predicted correctly, whereas 8 were predicted to be
highly active and one inactive. A total of 2 inactive
compounds out of 9 were predicted correctly, but 4 were
predicted to be highly active and the other 3 were
predicted to be moderately active. The success rate in
classifying active compounds as active is very similar
to that obtained by the selected pharmacophore gener-
ated against MAC DHFR inhibitors. But the pharma-
cophore for human DHFR performed poorly in predict-
ing inactive compounds correctly.

This poor performance can probably be explained by
the fact that all the inactive compounds against human
DHFR have long-chain or bulky alkyl groups at the R1,
R2, and R5 positions (Figure 1), e.g., -CH2OCH3 at
position R1 (compound no. 29, IC50 ) 31 000 nM) and
-OCH2CH3 (compound no. 1, IC50 ) 2300 nM; com-
pound no. 3, IC50 ) 1000 nM) and -O(CH2)2CH3
(compound no. 78, IC50 ) 7300 nM) at both R2 and R5
positions. It is important to note that the Catalyst
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program is not capable of handling any steric effect that
might be responsible for the lower activity of any
compound. All the above compounds, except compound
no. 29, are highly active against MAC DHFR. This
analysis indicates that the binding site on the human
DHFR is most likely much more compact than that of
the MAC DHFR. In the absence of any 3D structure of
MAC DHFR, this observation could not be verified.

Two of the most active compounds, one each from the
training (compound no. 62) and the test set (compound
no. 47), were mapped on the pharmacophore (hypothesis
1) and are shown in parts A and B of Figure 3, respec-
tively. These two active compounds have substantial
structural differences but mapped remarkably well on
the selected pharmacophore, and the activities were
predicted well by the pharmacophore. The most active
training set compound (no. 62) has an IC50 value of 2
nM, and this model estimated its activity as 5.9 nM.
Similarly, one of the most active compounds in the test
set (no. 47) has an IC50 value of 2.7 nM, and this model
estimated the activity as 6.5 nM. Therefore, it appears
that the highly active compounds inhibiting human
DHFR mapped well onto the selected pharmacophore.

3. Validation of the Pharmacophore Generated
from MAC DHFR Inhibitors on Three Structurally
Diverse Classes of Compounds That Show Activity
against MAC DHFR. One of the goals of pharmaco-
phore generation is to identify active compounds from
a 3D database that are structurally different and
diverse. To get additional confidence on the usefulness
of the pharmacophore model we generated from MAC
DHFR inhibitors, we validated the model by mapping

three structurally diverse classes of compounds (Figure
4), active against MAC DHFR, which were reported by
three different research groups (Figure 5). We did not
attempt to compare the actual experimental activity
with the estimated activity by the pharmacophore model
because the assay systems used by different research
groups were not identical. The mapping information
based on the pharmacophores we developed may help
to modify existing molecules from the three series of
compounds to develop drugs with better antimycobac-
terial activity.

In 1999, Rosowsky et al. reported the antiparasitic
activities against DHFR, including MAC DHFR, of a
series of 2,4-diaminopteridines with bridged diaryl-
amine side chains.21 The most potent (IC50 ) 0.012 µM)
and selective analogue, N-[(2,4-diaminopteridine-6-yl)-
methyl]dibenz[b,f]azepine (Figure 4A), was mapped on
the pharmacophore (Figure 5A) after a conformational
study using the “best” option in Catalyst. The 2,4-
diaminopteridine moiety of this compound mapped
similarly to the training and test series; i.e., the two
hydrogen bond acceptor features (HA) mapped correctly
on two of the nitrogen atoms. The hydrophobic feature
(HY) mapped on one of the phenyl groups of the dibenz-
[b,f]azepine ring. However, the molecule failed to map
on the ring aromatic (RA) feature of the pharmacophore.
Therefore, out of four features in the generated phar-
macophore, the compound satisfied three features. This
may explain the low micromolar activity of this com-
pound. Nevertheless, the mapping clearly shows that
the bridged side chain needs further modification to map
correctly onto the ring aromatic feature, and this
information may help in designing compounds with
improved activity.

Meyer et al. in 1995 reported the inhibitory activity
of a dihydrofolate reductase inhibitor, 4,6-diamino-1,2-
dihydro-2,2-dimethyl-1-[(2,4,5- trichlorophenoxy)propyl-
oxy]-1,3,5-triazine hydrobromide (WR99210), against
the Mycobacterium avium complex16 (Figure 4B). A
conformational analysis was initiated as before, and
then all conformers of the compound were mapped on
the pharmacophore. Out of two hydrogen bond acceptor
features (HA), one mapped on one of the nitrogen atoms
of the dihydrotriazine ring; the hydrophobic (HY) and
ring aromatic (RA) features mapped quite well on one
of the methyl groups on the triazine ring and the
dichloro-substituted phenyl ring, respectively (Figure
5B). In this case, again three out four features mapped
quite well and indicated room for chemical modification
for further improvement of activity.

Table 2. Results of Pharmacophore Hypotheses Generated Using Training Set Molecules against MAC DHFR

hypothesis
no.a

total
cost

cost difference
(null cost - total cost)

error
cost rms

correlation
(r) featuresb

1 90.856 51.820 72.606 0.730 0.967 HA, HA, HY, RA
2 91.542 51.134 74.874 0.872 0.950 HA, HD, HY, RA
3 92.091 50.585 73.457 0.786 0.962 HA, HD, HY, RA
4 92.260 50.416 76.397 0.955 0.938 HD, HD, HY, RA
5 92.416 50.260 75.741 0.920 0.943 HD, HD, HY, RA
6 93.014 49.662 75.527 0.908 0.946 HA, HD, HY, RA
7 93.073 49.603 75.678 0.917 0.945 HA, HD, HY, RA
8 94.374 48.302 75.671 0.916 0.947 HA, HD, HY, RA
9 94.693 47.983 78.589 1.064 0.922 HD, HD, HY, RA

10 94.729 47.947 77.036 0.988 0.936 HA, HD, HY, RA
a Null cost ) 142.676. Fixed cost ) 82.566. Configuration ) 14.169. All cost units are in bits. b HA, hydrogen bond acceptor; HD,

hydrogen bond donor; HY, hydrophobic feature; RA, ring aromatic feature.

Figure 2. Mapping of two of the most active compounds, (A)
compound no. 1 from the training set and (B) compound no.
65 from the test set on the selected pharmacophore (hypothesis
1) developed against MAC DHFR inhibitors. The green, blue,
and pink contours represent the hydrogen bond accepting
feature (HA), hydrophobic feature (HY), and ring aromatic
feature (RA), respectively.
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In 1998, Ganjee et al. reported activities of a series
of conformationally restricted tetrahydropyrido-annu-
lated furo[2,3-d]pyrimidines against dihydrofolate re-
ductase from several organisms, including the Myco-
bacterium avium complex.20 One of the compounds, 2,4-
diamino-5,6,7,8-tetrahydro-7-(4′-benzoyl-L-glutamic acid)-
pyrido [4′,3′:4,5]furo[2,3-d]pyrimidine (Figure 4C), showed
the highest potency (IC50 ) 0.97 µM) among all the
compounds tested. A conformational analysis was car-
ried out as before, and all the conformers were mapped
on the pharmacophore. This compound successfully
mapped on all four features of the selected MAC DHFR
pharmacophore. The carbonyl group in one of the
carboxylic acids and the carbonyl group in the L-

glutamic acid moiety mapped on the hydrogen bond
acceptor features, the phenyl group mapped to the
hydrophobic feature, and the furan ring mapped onto
the ring aromatic feature (Figure 5C).

This validation study provides additional confidence
for the pharmacophore models and suggests that they
may help in identifying, in a 3D database search,
structurally diverse compounds with potent and selec-
tive inhibitory activity against MAC DHFR.

Conclusions
The work presented in this study shows how chemical

features of a set of compounds along with their activities
ranging over several orders of magnitudes can be used

Table 3 (Continued)

Table 4. Results of Pharmacophore Hypotheses Generated Using Training Set Molecules against hDHFR

hypothesis
no.

total
cost

cost difference
(null costa - total cost)

error
cost rms

correlation
(r) featuresb

1 88.167 51.931 71.301 0.635 0.973 HD, HD, HD, HY
2 88.547 51.551 72.031 0.690 0.967 HD, HD, HD, HY
3 88.858 51.240 72.253 0.706 0.965 HA, HD, HD, HY
4 89.076 51.022 72.006 0.688 0.968 HD, HD, HY, HY
5 89.498 50.600 72.481 0.722 0.965 HA, HD, HY, HY
6 89.668 50.430 73.345 0.779 0.958 HA, HA, HD, HY
7 89.680 50.418 72.323 0.711 0.966 HD, HD, HY, HY
8 90.050 50.048 72.968 0.755 0.961 HD, HY, HY, RA
9 90.206 49.892 73.488 0.788 0.957 HA, HD, HY, HY

10 90.388 49.710 73.606 0.796 0.956 HA, HD, HY, HY
a Null cost ) 140.098. Fixed cost ) 83.088. Configuration ) 14.691. All cost units are in bits. b HA, hydrogen bond acceptor; HD,

hydrogen bond donor; HY, hydrophobic feature; RA, ring aromatic feature.
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Table 5. Experimental Inhibitory Activity and Activity Scale (Assigned and Estimated) of Test Set Molecules Using Hypothesis 1
from Tables 2 and 4 against MAC DHFR and hDHFR, Respectively

antimycobacterial activity against MAC-DHFR antimycobacterial activity against h-DHFR activity

molecule no. exptl IC50 (nM) activity scalea estimated activity scale exptl IC50 (nM) activity scaleb estimated activity scale

1 2300 + +++
2 1.1 +++ +++ 1000 ++ +++
3 1.4 +++ +++ 1000 ++ ++
4 0.4 +++ +++ 150 ++ +++
5 5.3 +++ + 1900 + +
6 2.8 +++ ++ 1000 ++ ++
7 0.86 +++ +++ 300 ++ +++
8 0.87 +++ +++ 277 ++ +++
9 1.1 +++ +++ 250 ++ +++

10 3.8 +++ +++ 850 ++ +++
11 0.91 +++ +++ 120 ++ +++
12 3.1 +++ +++ 370 ++ ++
13 0.9 +++ +++ 69 +++ +++
14 0.91 +++ +++ 68 +++ +++
15 0.92 +++ +++ 57 +++ +++
16 0.95 +++ +++ 44 +++ +++
17 0.78 +++ +++ 33 +++ +++
18 0.84 +++ +++
19 1.2 +++ ++ 36 +++ ++
20 0.64 +++ +++
21 0.85 +++ +++ 19 +++ +++
22 0.82 +++ +++ 17 +++ +++
23 1.1 +++ +++
24 1.1 +++ +++ 18 +++ +++
25 0.93 +++ +++ 15 +++ +++
26
27 0.91 +++ +++ 14 +++ +++
28 2.8 +++ +++
29
30 0.73 +++ +++ 8.7 +++ ++
31 0.94 +++ +++ 10 +++ +++
32 73 ++ + 670 ++ +
33 0.89 +++ +++ 8 +++ +++
34 0.79 +++ +++ 6.1 +++ +++
35 0.9 +++ +++ 6.7 +++ +++
36 0.7 +++ +++
37 0.87 +++ +++ 6.1 +++ +++
38 0.85 +++ +++ 5.9 +++ +++
39 0.7 +++ +++ 4.6 +++ +++
40 0.82 +++ +++ 5.2 +++ +++
41 0.6 +++ +++
42 0.93 +++ +++ 5.5 +++ +++
43 0.82 +++ +++
44 5 +++ +++
45
46 0.86 +++ +++ 4.1 +++ +++
47 0.66 +++ +++ 2.7 +++ +++
48 0.88 +++ +++ 3.6 +++ ++
49 0.82 +++ +++ 3.2 +++ +++
50 1300 + +
51
52 1.9 +++ ++
53 0.93 +++ +++ 142 ++ +++
54 5300 + +++
55
56 280 + ++ 3400 + +++
57 1.2 +++ +++ 12 +++ +++
58
59 0.86 +++ +++ 6.7 +++ +++
60 0.95 +++ +++ 7.1 +++ +++
61 1 +++ +++ 6.2 +++ +++
62 4.3 +++ +++
63
64 0.87 +++ +++
65 0.98 +++ +++ 4.3 +++ +++
66 0.88 +++ +++
67 620 + +++
68
69 1.5 +++ +++ 440 ++ ++
70 4.5 +++ +++ 1200 + ++
71 2.7 +++ +++ 500 ++ ++
72
73 2500 + ++
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to generate pharmacophore hypotheses that can suc-
cessfully predict the activity. The models were not only
predictive within the same series of compounds but
three different classes of diverse compounds also ef-
fectively mapped onto most of the features important
for activity. The pharmacophores generated from MAC
DHFR inhibitors can be used (1) as a three-dimensional
query in database searches to identify compounds with
diverse structures that can potentially inhibit MAC
DHFR selectively and (2) to evaluate how well any
newly designed compound maps on the pharmacophore

before undertaking any further study including synthe-
sis. Both these applications may help in identifying or
designing compounds for further biological evaluation
and optimization.

The pharmacophores developed in this study using
inhibitors against Mycobacterium avium complex and
human DHFR showed distinct chemical features that
may be responsible for the activity of the inhibitors. The
knowledge concerning the differences in pharmacophore
patterns of these two systems is expected to be useful
in identifying and designing inhibitors with greater
selectivity toward the MAC DHFR. We intend to utilize
the information to undertake 3D searches on large
databases of druglike molecules to identify a new
generation of MAC DHFR inhibitors.
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